Analisi Matematica 1

docente: Ghezzi - codocente: Callegari

Cognome:	 A.A.	2021-	2022
Nome: .	 8 Febb	raio	2022

- 1. Sia data la successione $a_n = \frac{(-1)^n}{n+1}$.
 - (a) Determinare, motivando la risposta, l'insieme $A = \{x \in \mathbf{R} \mid \text{definitivamente in } n \text{ si ha } a_n \geq x\}.$
 - (b) Determinare, motivando la risposta, l'insieme $B = \{x \in \mathbf{R} \mid \text{frequentemente in } n \text{ si ha } a_n > x\}$.
 - (c) Trovare, se esiste, una successione a_n per la quale risulti A = B. Motivare la risposta.
- 2. Al variare del parametro $\alpha > 0$, calcolare $\liminf_{n \to +\infty} a_n$ e $\limsup_{n \to +\infty} a_n$, dove $a_n = \left(1 + \frac{(-1)^n}{n^{\alpha}}\right)^n$
- 3. Calcolare: $\lim_{n \to +\infty} n^4 \cdot \ln \left(\cos \left(\ln \left(\cos \frac{1}{n} \right) \right) \right)$.
- $\boxed{4.} \quad \text{Data} \quad f(x) = \ln\left(\sqrt{x} + e^x\right)$
 - (a) calcolare $f'_{+}(0)$;
 - (\mathbf{b}) dire se è Lipschitziana su [0,1];
 - $(\mathbf{c})\,$ dire se è uniformemente continua su [0,1];
 - (d) dire se è Lipschitziana su $[1, +\infty)$;
 - (e) dire se è uniformemente continua su $[1, +\infty)$.
- 5. Calcolare: $\lim_{x \to 0} \frac{e^{-\sin^2 x} \cos^2 x \frac{1}{2}x^4}{x^2 \sin x^2}$.
- 6. Sia data la funzione $f(x) = \frac{e^{2x} e^{-x}}{e^{2x} + e^{-x}}$.
 - (a) Fare uno studio completo del grafico di f(x).
 - (b) Dire quante sono le soluzioni dell'equazione $f(x) = \frac{x}{2} + \frac{1}{4}$.
 - (c) Dire per quali $m \in \mathbf{R}$, esiste una retta di pendenza m che interseca il grafico di f(x) in 3 punti.

Soluzioni

- Siccome $a_n \to 0$, sta definitivamente sopra ad ogni numero negativo e sotto ogni numero positivo. Quindi sia A che B contengono tutti i numeri negativi ma nessun numero positivo. Osserviamo però che $0 \notin A$, perché per n dispari si ha $a_n < 0$, mentre invece $0 \in B$ perché per n pari di ha $a_n > 0$. Possiamo quindi concludere che $A = (-\infty, 0)$ ma $B = (-\infty, 0]$. Se avessimo voluto che A e B fossero entrambe uguali a $(-\infty, 0]$ sarebbe bastato togliere il segno alterno in modo che $a_n \to 0$ da sopra. Infatti in tal caso 0 appartiene ad entrambi visto che $a_n > 0$ per ogni n.
- 2. Prendiamo la sottosuccessione dei termini con indice pari:

$$a_{2k} = \left(1 + \frac{(-1)^{2k}}{(2k)^{\alpha}}\right)^{2k} = \left(1 + \frac{1}{(2k)^{\alpha}}\right)^{2k}$$

Per $\alpha = 1$ si ha ovviamente

$$a_{2k} = \left(1 + \frac{1}{2k}\right)^{2k} \longrightarrow e.$$

Invece per $0 < \alpha < 1$ si ha

(1)
$$a_{2k} = \left(1 + \frac{1}{(2k)^{\alpha}}\right)^{2k} = \left(\left(1 + \frac{1}{(2k)^{\alpha}}\right)^{(2k)^{\alpha}}\right)^{(2k)^{1-\alpha}} \longrightarrow e^{+\infty} = +\infty$$

perché $1 - \alpha > 0$ e quindi $(2k)^{1-\alpha} \to +\infty$. Infine per $\alpha > 1$ si ha

(2)
$$a_{2k} = \left(1 + \frac{1}{(2k)^{\alpha}}\right)^{2k} = \left(\left(1 + \frac{1}{(2k)^{\alpha}}\right)^{(2k)^{\alpha}}\right)^{(2k)^{1-\alpha}} \longrightarrow e^0 = 1$$

perché $1 - \alpha < 0$ e quindi $(2k)^{1-\alpha} \to 0$. Riassumendo:

(3)
$$\lim_{k \to +\infty} a_{2k} = \begin{cases} 1 & \text{per } \alpha > 1 \\ e & \text{per } \alpha = 1 \\ +\infty & \text{per } 0 < \alpha < 1 \end{cases}$$

Se invece prendiamo la sottosuccessione dei termini di indice dispari

$$a_{2k+1} = \left(1 + \frac{(-1)^{2k+1}}{(2k+1)^{\alpha}}\right)^{2k+1} = \left(1 - \frac{1}{(2k+1)^{\alpha}}\right)^{2k+1}$$

procedendo in modo del tutto analogo si ottiene che

(4)
$$\lim_{k \to +\infty} a_{2k+1} = \begin{cases} 1 & \text{per } \alpha > 1 \\ \frac{1}{e} & \text{per } \alpha = 1 \\ 0 & \text{per } 0 < \alpha < 1 \end{cases}$$

Dunque si conclude che per $\alpha > 1$ si ha $a_n \to 1$ e quindi $\limsup a_n$ e $\liminf a_n$ coincidono. Invece per $0 < \alpha \le 1$ la successione ha due punti limite: quello dato da (3) è il $\limsup a_n$ mentre quello dato da (4) è il $\liminf a_n$.

3. Posto

$$f(x) = \ln\left(\cos x\right),\,$$

il limite da calcolare può essere riscritto come

$$\lim_{n \to +\infty} n^4 f\left(f\left(\frac{1}{n}\right)\right).$$

Si noti che per $x \to 0$ si ha

$$f(x) = \ln(\cos x) = \ln(1 + (\cos x - 1)) \approx \cos x - 1 \approx -\frac{x^2}{2}$$

e quindi

$$f(f(x)) \approx -\frac{(f(x))^2}{2} \approx -\frac{\left(-\frac{x^2}{2}\right)^2}{2} = -\frac{x^4}{8}$$

Di conseguenza il nostro limite diventa

$$\lim_{n \to +\infty} n^4 f\left(f\left(\frac{1}{n}\right)\right) = \lim_{n \to +\infty} n^4 \cdot \frac{-\left(\frac{1}{n}\right)^4}{8} = -\frac{1}{8}.$$

$$\begin{split} f'_{+}(0) &= \lim_{x \to 0^{+}} \frac{\ln \left(\sqrt{x} + e^{x} \right)}{x} = \lim_{x \to 0^{+}} \frac{\ln \left(1 + \left(\sqrt{x} + e^{x} - 1 \right) \right)}{x} = \\ &= \lim_{x \to 0^{+}} \frac{\sqrt{x} + e^{x} - 1}{x} = \lim_{x \to 0^{+}} \left(\frac{1}{\sqrt{x}} + \frac{e^{x} - 1}{x} \right) = +\infty + 1 = +\infty. \end{split}$$

Da ciò segue che in ogni intorno destro di 0 ci sono rapporti incrementali arbitrariamente grandi e quindi, sull'intervallo [0, 1], f non può essere lipschitziana.

Su tale intervallo è tuttavia uniformemente continua grazie al teorema di Heine-Cantor, visto che [0,1] è compatto ed f è continua in quanto composizione di funzioni continue.

Osserviamo ora che

(5)
$$f'(x) = \frac{\frac{1}{2\sqrt{x}} + e^x}{\sqrt{x} + e^x}.$$

Si noti che se $x \ge 1$ si ha

$$0 < \frac{1}{2\sqrt{x}} < \sqrt{x}$$

e quindi nel secondo membro della (5) il denominatore è maggiore del denominatore e sono entrambi positivi.

Di conseguenza sulla semiretta $[1, +\infty)$ si ha sempre 0 < f'(x) < 1 e quindi, grazie al teorema di Lagrange, anche tutti i rapporti incrementali sono compresi tra 0 e 1.

Possiamo dunque concludere che, su $[1, +\infty)$, f è lipschitziana e quindi anche uniformemente continua.

5. Il denominatore ha ordine 6 perché

$$x^{2} - \sin x^{2} = x^{2} - x^{2} + \frac{x^{6}}{3!} + o(x^{6}) \approx \frac{x^{6}}{6}$$

quindi lo sviluppo del numeratore ci serve al massimo fino all'ordine 6. Per cominciare si ha:

(6)
$$e^{-\sin^2 x} - \cos^2 x - \frac{x^4}{2} = 1 - \sin^2 x + \frac{\sin^4 x}{2} - \frac{\sin^6 x}{6} + O\left(\sin^8 x\right) - \cos^2 x - \frac{x^4}{2}$$

dopodiché bisogna resistere alla tentazione di sviluppare subito $\sin x$ e $\cos x$ perché conviene prima osservare che $1-\sin^2 x-\cos^2 x=0$, cosicché la (6) diventa

(7)
$$e^{-\sin^2 x} - \cos^2 x - \frac{x^4}{2} = \frac{\sin^4 x}{2} - \frac{\sin^6 x}{6} - \frac{x^4}{2} + O\left(x^8\right)$$

dove abbiamo anche potuto sostituire $O\left(\sin^8 x\right)$ con $O\left(x^8\right)$ perché x^8 e $\sin^8 x$ hanno lo stesso ordine di infinitesimo.

Quindi il nostro limite diventa

(8)
$$\lim_{x \to 0} \frac{\frac{\sin^4 x}{2} - \frac{\sin^6 x}{6} - \frac{x^4}{2} + O\left(x^8\right)}{\frac{x^6}{6}} = \lim_{x \to 0} \left(3 \cdot \frac{\sin^4 x - x^4}{x^6} - \frac{\sin^6 x}{x^6} - 6 \cdot \frac{O\left(x^8\right)}{x^6}\right).$$

Basta ora notare che

$$\sin^4 x - x^4 = \left(\sin^2 x + x^2\right) \cdot (\sin x + x) \cdot (\sin x - x) \approx 2x^2 \cdot 2x \cdot \left(-\frac{x^3}{6}\right) = -\frac{2}{3}x^6$$

per poter dire che (8) diventa

$$\lim_{x \to 0} \left(3 \cdot \frac{\sin^4 x - x^4}{x^6} - \frac{\sin^6 x}{x^6} - 6 \cdot \frac{O(x^8)}{x^6} \right) = 3 \cdot \left(-\frac{2}{3} \right) - 1 + 6 \cdot 0 = -3.$$

6. Punto (a)

Prima di iniziare lo studio di f, per fare meno calcoli conviene scriverla in modo più comodo. Ad esempio, invece di scrivere

(9)
$$f(x) = \frac{e^{2x} - e^{-x}}{e^{2x} + e^{-x}},$$

moltiplicando numeratore e denominatore per e^x si ottiene

(10)
$$f(x) = \frac{e^{3x} - 1}{e^{3x} + 1}$$

mentre invece, moltiplicandoli per e^{-2x} si ottiene

(11)
$$f(x) = \frac{1 - e^{-3x}}{1 + e^{-3x}}.$$

Inoltre, per derivarla è più comodo riscrivere (10) così:

(12)
$$f(x) = \frac{e^{3x} - 1}{e^{3x} + 1} = \frac{e^{3x} + 1 - 2}{e^{3x} + 1} = 1 - \frac{2}{e^{3x} + 1}.$$

Possiamo ora iniziare a studiare f(x).

Il dominio è banalmente tutto R, visto che il denominatore è sempre strettamente positivo. Inoltre, confrontando (10) e (11) si ottiene subito che è una funzione dispari.

Da (12) segue subito che per $x \to +\infty$ c'è un asintoto orizzontale a quota 1 e quindi, per disparità, c'è n'è uno anche per $x \to -\infty$, ma a quota -1.

Per derivare f(x) è più comodo usare la (12):

(13)
$$f'(x) = \left(1 - \frac{2}{e^{3x} + 1}\right)' = -2 \cdot \frac{-1}{\left(e^{3x} + 1\right)^2} \cdot 3e^{3x} = \frac{6e^{3x}}{\left(e^{3x} + 1\right)^2},$$

Da (13) segue subito che f(x) > 0 per ogni x, quindi f è strettamente crescente su tutto R. Per calcolare f''(x) conviene prima scrivere un po' meglio f'(x):

$$f''(x) = \left(\frac{6e^{3x}}{(e^{3x} + 1)^2}\right)' = 6 \cdot \left(\frac{1}{e^{3x} + 1} - \frac{1}{(e^{3x} + 1)^2}\right)' =$$

$$= 6 \cdot \left(\frac{-1}{(e^{3x} + 1)^2} - \frac{-2}{(e^{3x} + 1)^3}\right) \cdot 3e^{3x} = \frac{-18e^{3x}}{(e^{3x} + 1)^3} \left(e^{3x} - 1\right)$$

Quindi f''(x) > 0 per x < 0 e f''(x) < 0 per x > 0 e di conseguenza, essendo anche regolare per $x=0,\,f$ è convessa sulla semiretta $(-\infty,0]$, concava su $[0,+\infty)$ e x=0 è un punto di flesso. Osserviamo che f(0) = 0 e $f'(0) = \frac{3}{2}$.

Mettendo insieme le informazioni trovate si ottiene il grafico seguente:

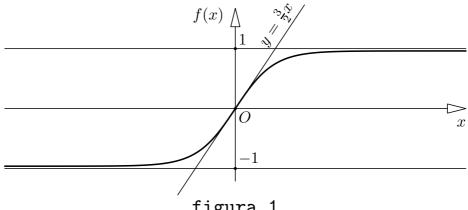


figura 1

Punto (b)

Per mostrare che l'equazione

$$f(x) = \frac{x}{2} + \frac{1}{4}$$

ha 3 soluzioni, mostriamo che la retta

(14)
$$y = \frac{x}{2} + \frac{1}{4} \stackrel{\text{def}}{=} r(x)$$

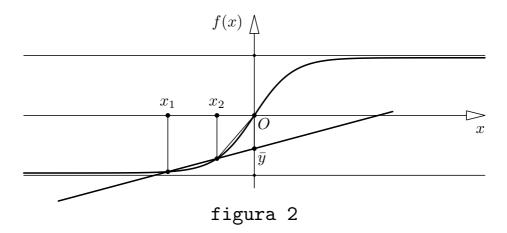
interseca il grafico di f(x) esattamente in 3 punti.

Per cominciare osserviamo che per x < 0 c'è esattamente un punto di intersezione.

Infatti, per mostrare che ce n'è almeno uno, basta applicare il teorema degli zeri sull'intervallo [-3,0] alla funzione differenza f(x) - r(x), visto che è continua e che

$$r(-3) = -\frac{5}{4} < -1 < f(-3), \text{ ma, } r(0) = \frac{1}{4} > 0 = f(0).$$

Per mostrare che tale punto è unico invece basta invocare la convessità stretta di f(x) per x < 0. Infatti la retta (14) interseca l'asse y a quota $\frac{1}{4}$, mentre se intersecasse il grafico di f(x) in due punti x_1 e x_2 con $x_1 < x_2 < 0$ (vedi figura 2) allora la sua intersezione con l'asse y dovrebbe avere quota \bar{y} negativa.



Per dare una dimostrazione formale del fatto che si otterrebbe $\bar{y} < 0$, si osservi che

$$\frac{f(x_2) - \bar{y}}{x_2 - 0} = \text{pendenza di } r(x) = \frac{f(x_2) - f(x_1)}{x_2 - x_1} < \frac{f(x_2) - f(0)}{x_2 - 0}$$

dove l'ultima disuguaglianza segue dalla stretta convessità di f(x). Di conseguenza, visto che $x_2 < 0$, da

$$\frac{f(x_2) - \bar{y}}{x_2 - 0} < \frac{f(x_2) - f(0)}{x_2 - 0}$$

segue che

$$f(x_2) - \bar{y} > f(x_2) - f(0)$$

e quindi che

$$\bar{y} < f(0) = 0.$$

Mostriamo ora che per x > 0 i punti di intersezione tra la retta (14) e il grafico di f(x) sono esattamente 2.

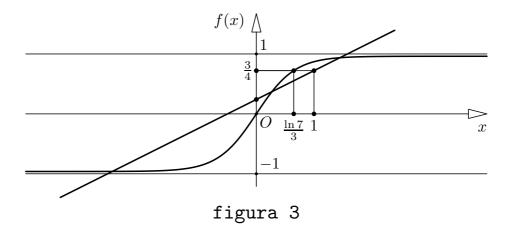
Per prima cosa non possono essere più di 2 perché se si intersecassero in 3 punti x_1 , x_2 e x_3 , con $0 < x_1 < x_2 < x_3$, si otterrebbe una contraddizione. Infatti, poiché f(x) è strettamente concava su $(0, +\infty)$, dovrebbe valere la disuguaglianza stretta

$$\frac{f(x_1) - f(x_2)}{x_1 - x_2} > \frac{f(x_2) - f(x_3)}{x_2 - x_3}$$

che, allo stesso tempo, però dovrebbe essere un'uguaglianza, perché entrambi i membri devono eguagliare la pendenza della retta. Quindi è assurdo supporre che le intersezioni siano più di 2. Tuttavia non possono nemmeno essere meno di 2.

Infatti, siccome r(x) > f(x) sia per x = 0 che per $x \ge \frac{3}{2}$, basta mostrare che $r(x_0) < f(x_0)$ per qualche $x_0 \in (0, \frac{3}{2})$, e ciò è sufficiente per poter concludere (sempre applicando il teorema degli zeri) che la funzione f(x) - r(x) si annulla sia in un punto $c_1 \in (0, x_0)$ che in un punto $c_2 \in (x_0, \frac{3}{2})$.

Un modo per mostrare, senza dover ricorrere alla calcolatrice, che un tale x_0 esiste, è quello di osservare (vedi figura 3) che la funzione f(x) raggiunge quota $\frac{3}{4}$ prima della retta.



Si trova che la funzione raggiunge quota $\frac{3}{4}$ per $x = \frac{\ln 7}{3}$ e la retta invece per x = 1 quindi, visto che sia la funzione che la retta sono strettamente crescenti e che $\frac{\ln 7}{3} < 1$, ogni punto tra $\frac{\ln 7}{3}$ e 1 può essere scelto come x_0 .

Ecco dettagli dei calcoli.

$$r(x) = \frac{3}{4} \iff \frac{x}{2} + \frac{1}{4} = \frac{3}{4} \iff x = 1$$

$$f(x) = \frac{3}{4} \iff \frac{e^{3x} - 1}{e^{3x} + 1} = \frac{3}{4} \iff 4e^{3x} - 4 = 3e^{3x} + 3 \iff e^{3x} = 7 \iff x = \frac{\ln 7}{3}$$

$$\frac{\ln 7}{3} < \frac{\ln 8}{3} = \ln \sqrt[3]{8} = \ln 2 < \ln e = 1$$

Punto (c)

Cerchiamo per quali valori di m si può scegliere q in modo che la funzione H(x) = f(x) - (mx+q) intersechi quota zero in 3 punti. Osserviamo che

$$H'(x) = f'(x) - m$$

dove, dallo studio di f(x), sappiamo che $f'(0) = \frac{3}{2}$ e che per $x \neq 0$ si ha $0 < f'(x) < \frac{3}{2}$. Otteniamo perciò che H(x) è strettamente crescente se $m \leq 0$ e strettamente decrescente per $m \geq \frac{3}{2}$. In entrambi i casi quindi è iniettiva e non può intersecare quota zero più di una volta.

Università di Roma "Tor Vergata" - CdL Matematica

Se invece $0 < m < \frac{3}{2}$, prendiamo q = 0 in modo da avere H(0) = 0 e osserviamo che c'è tutto un intorno $(-\delta, \delta)$ in cui H'(x) > 0, nel quale dunque H(x) cresce strettamente. Esiste quindi $x_0 > 0$ tale che $H(x_0) > 0$. D'altra parte, siccome $H(x) \to -\infty$, esiste $x_1 > x_0$ tale che $H(x_1) < 0$, quindi per il teorema degli zeri esiste $c \in (x_0, x_1)$ tale che H(c) = 0. Si noti che per disparità anche H(-c) = 0, quindi H(x) si annulla almeno in 3 punti: $0, c \in -c$.

Questo dimostra che, per $0 < m < \frac{3}{2}$, i punti di intersezione sono almeno 3.

Per mostrare che sono esattamente 3 si può ragionare in modo analogo a quanto fatto nel punto (b) utilizzando le informazioni sulla convessità di f(x).

In alternativa si può osservare che, se per assurdo la funzione differenza f(x)-r(x) si annullasse in 4 o più punti, allora la sua derivata (per il teorema di Rolle) si dovrebbe annullare in almeno 3 punti e quindi (sempre per il teorema di Rolle, ma applicato alla sua derivata) la sua derivata seconda si dovrebbe annullare in almeno 2 punti. Ma questa è una contraddizione perché la derivata seconda (che conosciamo) si annulla solo per x=0.